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Abstract

A unified framework for classification ant prediction problems is pre-

sented. Well known and lesser known relationships among correlations,

distances and error rates are established. A new population distance, the

shrunken generalized distance, and a new estimator of the actual error rate

are introduced.



Classification and prediction problems abound. An extensive list of

prediction and classification examples is easy to generate. Such a list

could be structured by searching for similarities and identifying differ-

ences among the examples on it. Ultimately, each entry on the list could

be viewed as a member of one of a smaller set of classes of prediction/

classification problems.

The nature of the criterion (dependent) variable may play a useful role

in structuring a list of classification/prediction problems. Some criteria

are essentially continuous in nature, e.g., scores on a long test. Other

criteria are inary, e.g., group membership. Other criteria appear binary

but may be thought of as iichotomizations of a continuous underlying crite-

rion, e.g., pass/fail grading of an essay. Other criteria are multi-

chotomous. In this paper, discussion is limited to the continuous normally

distributed criterion sceranios. For both cases, it will be assumed that

the predictor variables are continuous multivariate normal. For the binary

variable case, the multivariate normal assumption is conditioned on the

binary criterion, i.e., for each value of the binary criterion, the predic-

tors are multivariate normal with a common covariance matrix, but different

centroids. In other words, for the continuous criterion case, the correla-

tions model is used, while for the binary case the assumptions associated

with the classic two-group discriminant analysis problem are employeu.

When these two models fit some population of data, then the use of

standard loss functions (least squares in the continuous criterion case;

maximum probability it the binary criterion case) yields well known

population-optimal solutions.
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Population Indices

The Continuous Criterion Case

For the continuous case, ordinary least squares regression yields the

population optimal regression equation,

-1
(1) 0 '1 Exx- p 2xy '

where E is the r-by-r population covariance matrix among the predictors
xx

(X), and a
xy

is the r-by-1 vector of covariances between the predictors and
-

criterion y. The population multiple correlation, or or validity coeffi-

cient,

(2) p = (sfc )/(8 'E $ a
2
)
1/2

P -P-xY xx-P Y

indexes the extent to which the predicted criterion orderings,

(3) Yp(xi) 4E1 So '

obtained by applying the regression weights to the r predictor scores for

the individual (x ), matches the ordering of the criterion scores in the

population. And, the population mean squared error, MSE , indexes how

accurately the predicted criterion scores match the actual criterion scores

in the population,

(4) MSE e(y
P

-
P
)
2

.

The population squared validity and mean squared error of prediction are

related via

(5) p
2

1 - MSE
P
/a
Y

2
.

The Binary Criterion Case

In the standard two subpopulation classification case in which the

subpopulations, K1 and K2, are of equal size, i.e., pr(K1) pr(K2) .5,



and the n predictors in both subpopulations follow a multivariate normal

distribution with the same covariance matrix, E, and different centroids,

HI and E2, optimal classification according to the MAXiMUM probability,

maximum likelihood, and generalized distance rules (Huberty, 1975;

Tatsuoka, 1971) all reduce to assignment to the subpopulation with the

nearest centroid. Operationally, this is accomplished by computing the

Wald-Anderson classification statistic

(6)
Wp(351) 4 [II -5(4 E2)] '

where X
P

is r-by-1 vector containing Fisher's (1936) population linear

discriminant weights,

:7) 1(111 u2)

The adequacy of classification in the population is indexed by the

optimal error rate (Hills, 1966),

(8) E = .5 0 - Wp 1 ) + .5 0 r wp(112)

-P
'E A

P

77
)

1
[(A

P -P
'E )

1 2

-

which is the probability of misclassification associated with use of the

population optimal classification rule, W . In (8), 0 is the standard

normal distribution function. It has been shown that Ep can be expressed

in terms of the separation between K1 and K2, the population Mahalonobis

(1936) or generalized distance,

(9)
6p

2

(24
112)'E -1(111 112)

'

which can be thought of as the squared standardized difference between

populations K1 and K2 along the dimension defined by
-P
A ,

(10) ape gi (A
1

U
-2 -p

)

2
/(X

-p
'EX )1.-p -

8

3
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In particular, E can be expressed as a function of
6p2

(11) Ep .50 -.5 6 2 + .50 -.5 6 2 4 [-.5d ]

p p

,

which can be obtained by evaluating (6) at ul and u2 in (8), and simplying

the expression using (9) and (10).

Parallels Between Continuous Criterion and Binary Criterion Cases

There are parallels between the continuous criterion case and the bina-

ry criterion case. There are parallel sets of weights: for the contin-

uous criterion case, XP for the binary criterion case. The squared corre-

lation measure of association parallels the generalized distance 6
2

. And

the mean squared error of prediction, MSE
P.

parallels the optimal error

rate, E . In fact, for the binary criterion case, and
-1)
X are known to

-1)

be proportional. In addition, it can be shown that 6
2
and p are related

(See Appendix A),

(12)
2 p2

/ [pr(K1) pr(K2)] .

1-p
2

Cross-Validity and the Actual Error Rate

In practice, we seldom work with populations. Instead,

to samples of data. Substitution of sample mean, variances

into (1) - (12) produces sample analogues of , X , pp, 6
P -P P

For example, for the continuous criterion case, we have

(13) b
s

C
xx

-1

-xy
,

-

we are limited

and covariances

2
, MSEp and E .
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where Cxx and c
xy

are the sample analogues of E and a
y

. For the binary
xx -x

criterion case, we have

- 1 _
(14) is G (E1 - ,

where G, i
1
and i

2-
are the sample within-group covariance matrix and sample

centroids, respectively. In general the usefulness of a regression equa-

tion or a classification rule should be assessed by its performance in the

population, not its performance in the sample. For the continuous criteri-

on case, the population cross-validity coefficient,

(15) R
c

(b
-s -x

'a
y
)/(-sb 'Z

xx-
b
s
a
y

2
)
1/2

and the mean squared error of prediction MSEc associated with use of the

sample weights, bs, in the population index the long-term usefulness of the

sample weights. Lord (1950) developed an estimator for the MSEc for when

the predictors are considered fixed, i.e., the regression model, while

Stein (1960) developed an estimator for the MSEc under the correlation

model. Browne (1975), as demonstrated by Drasgow, Dorans and Tucker (1979)

and Drasgow and Dorans (1982), developed an estimator of the population

squared cross-validity that is virtually unbiased and robust to violations

of multivariate normality in the predictors.

For the binary criterion case, the actual error rate, Ec, summarizes

how well a sample classification rule works in the population. The actual

error rate is the probability of misclassification associated with use of

the sample classification rule in the population. In many ways, the actual

error rate is more important than the optimal error rate. The actual error

rate is akin to the population mean squared error rate associated with a

sample regression equation. In the two equal-sized subpopulation case

under consideration, the expression for the actual error rate is



(16) E
c

.50 -Ws(1-11) + .50 W9(2.2) ,

L.

v
w

6

where Ws(mk) is the sample classification statistic Ws(xi) evaluated at u.,

(17) W
s
(x
I

) 1
s
'[x

I
- .5(i

1
-

2
)1 ,

-

and V is the variance in each subpopulation of the composite defined by

the sample discriminant weights, ls,

(18) V 1 q 1
w -s -s

The literature contains several estimators of the actual error rate for

the two multivariate normal subpopulation case. One class of estimators,

that are somewhat heuristic, are the distance - modification estimators.

This class of estimators attempt to mimic the relationship between E and

2
6 stated in (11) by substituting distance estimates into

(19) E
c

0[(-.5 D)].

Two of the most popular distance modification methods are the D-method

and the DS-method. The D-method uses the sample generalized distance D
s

2

for D
2

In (19). The DS-method uses

(20) D
DS

2
(N-n-3)D

s

2
/(N-2) ,

wIlich is the positive portion of an unbiased estimate of 6
2

,

A
(21) 6

2
D
DS

2
- Nn/(N/2)

2
.

According to Lachenbruch and Mickey (1968), D
DS

2
is used instead of 6

2
to

avoid negative distance estimates.
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The Shrunken Generalized Distance

While attracted by the intuitive appeal of these two dtatance-

modification procedures, I am convinced that they are inappropriate-, i.e.,

not the right distances. D
s

2
is like the sample squared multiple

correlation, R
s

2
; in fact they can be :elated. Using a positively biased

estimate of the population Mah-lonbis distance, as the DS-method does, is

like using a positively biased estimate of the population squared multiple

correlation Pp" to estimate the population squared crossvalidity

coefficient R
c

2
. An estimate of some distance that was snalogons to the

squared cross-validity is clearly needed. So I invented (Dorans, 1979) the

shrunken generalized distance, D
c

2
, between two subpopulation centroids, u

1

and 122.

The shrunken generalized distance is the squared standardized distance

between the projections of the two subpopulation centroids onto the dimen-

sion defined by the sample discriminant weights, ls. These projections are

obtained by evaluating the sample classification statistic in (17) at RI

and E2. The variance along this dimension is that defined in (18). The

shrunken generalized distance is formally expressed as

(22) D
c

2
= (W

s
(u

1
) - W

s
(u
2
))

2
/Vw

which can be rewritten as

(23) Dc
2

= ls' (u1 - Id
2
/(1

s
'El
-s

) .

-

To appreciate what D
c

2
represents, it is helpful to resort to geometric

imagery. For the case of two multivariate normal subpopulations with equal

covariance matrices and different centroids, the population discriminant

weights A
P

define the dimension in the n-dimensional predictor space along

1')
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which there is maximal separation between the subpopulations. As noted

earlier, the population generalized distance, 8
2

, can be thought of as the

squared standardized distance between the subpopulation centroids' projec-

tions on this dimension defined by A
P

(See 4quation

Suppose that instead of A
V
, we had uead the sample weights 1

s
to define

-

a dimension in the population. When the centroids of the two sub-

populatione are projected onto this dimension, two means are produced, one

for each subpopulation on this dimension. The squared standardized differ-

ence between these means is the shrunken generalized distance. Unless the

dimension defined by the sample weights is parallel or collinear to the

dimension defined by the population optimal weights, this squared standard-

izes' difference in means will be smaller than the population generalized

distance. In other cords, the distance will have shrunken; hence, the

phrase shrunlr'n generalized distance.

This shrunken generalized distance should estimate the actual error

rate better the modified distances used by the D-method and the DS-method.

An estimator of the shrunken generalized distance was derived (See Appendix

8),

(24)
6

P

2 N-3 + N1N2N-1(N-r-2)
p
2

1^2

c
(N-3) (r + N

1
N
2
N
-1

d
p

2
)

which uses the unbiased estimator of the population generalized distance

defined in (21) and where N1 and N2 are the sample sizes for each subgroup,

i.e., N Ni + N2. A simulation was conducted to compare this new shrunken

distance estimator with the two other distance modification estimators, as

13
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well as five other estimators. I 3xpected the MU-estimator, as I called

it, to be superior to the D-method and DS-method because it used the appro-

priate distance, the shrunken generalized distance.

One of the five other estimators examined in the simulation is the

DS-method, which is based on Okamoto's (1963) asymptotic expansion of the

distcf.bution of the sample Wald-Anderson statistic, Ws. Previous research

('.achenbruch and Mickey, 1968; Sorum, 1972) had demonstrated that the

OS-method was the best estimator available. The equal N special case of

Okamoto's OS-method was used,

(25)
(r-1) D

DS
(r-1)D

DS
Ec(OS) = (1) (-.5Dros) + (1) (.5Dros) + +

ND
DS

4N 4(N-2)

In (25), (1) is the standard normal density function.

The simulation study (Dorans, 1984) demonstrated that the MU-method is

till best of the heuristic distance - modification procedures. In addition,

it seemed to perform as well as if not better than the. OS-method. The

MU-methci works well because it is an estimator cf the minimum actual error

rate associated with use of the sample classification rule in the popula-

tion. (See Appendix C for proof of this statement.)

The Shrunken Generalized Distance and the 3.uared Cross-Validit

In Appendix A, it is demonstrated that the population parameters p
2

and

6
2
are related as in equation (12). In Appendix D. the relationship

between the shrunken generalized distance, D
c

2
, and the squared cross-

14
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validity coefficient, R
c

2
, is shown to be

(26) 2
Rc

2

Dc li--2(c11(12) '

(1 -Rc )

where ql and q2 are the relative sizes of subpopulations K1 and K2. This

relationship between R
c

2
and D

c

2
completes the unified framework for

classification and prediction problems.

The framework distingtishes between continuous criterion cases and

truly binary criterion cases. On the continuous side of the ledger we have

P,
pp and MSE with (2), (3) and (5) serving as definitions and establish-

ing relationships. On the binary side we have the analogous , 6p2, and

E with (7), (8), (9) and (10) serving as defining relationships. Then

2
Appendix A demonstrates that 6

2
and )

P
are related as in (12).

The framework includes the use of sample weights in the population.

For the continuous criterion case, we have R
c

2
And MSE

c
. For the binary

criterion case, we have D
c

2
and E

c
. Appenda D establishes the relation-

ship between R
c

2
and D

c

2
, while Appendix C shlwp now D

c

2
and E

c
may be

related.

In order to complete the framework for prediction/classification prob-

lems, the notion of the shrunken generalized distance, D
c

2
, was introduced.

In addition to being the missing piece in the analytic framework, this

distance is useful for estimating the actual error rate, as demonstrated

elsewhere (Dorans, 1984).

15
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APPENDIX A

. 2
RELATIONSHIP BETWEEN P

2
AND 0

In general, let r be a (r+1)17-(r+1) covariance having the form:

E 1 a 1
xx ;

(A.1) r

a 1 a
Y

where, a
x

is a 1-by-r vector of covariances for the criterion variable, Y,

with each of the r predictor variables X, Exx is the intercovariance matrix

among the r predictors, and a
2

is the variance of the criterion. When Y

is a binary variable representing group membership, taking the value 1 if

an individual is from subpopulation K1, and the value 0 if an individual is

from subpopulation K2, ay
2
and a

yx
take on special forms. In particular,

2
a is defined as the product

(A.2)
ay

2
q1 q2

'

where ql and q2 are the proportions of individuals in K1 and K2 respective-

ly. The covariance vector takes on the form

(A.3)
2xy (11(1)(P1 /1) (12(o)(u2 /1)

(11(11 (11E1 (12E2)

qlq2(11 122)

where 11
1
is the r-by-1 centroid vector in K

1
while u., is the r-by-1

centroid vector in K
2
and u is the gran' mean

(A.4) 11 ' (12E2

Therefore, when group membership is coded as a binary variable, the general

expression for r in (A.1) has the form

(A.5) r

XX ; qiq2(111-112)

n n 11 )11 n
'1'2'14 2' I '1'2

18



In general, the population least squares regression weights 0 are

defined as

(A.6) 0 E -la
-p xx -xy '

which, for a binary criterion variable reduces to

(A.7) 0
-

q q
1 2

-1
(1.1 ) .

xx 4 -2

The population squared multiple correlation is defined as

(A.8) P2 (Va y)2/(ay24I.14)

(q1c12411-112)

,

Exx
-1

(111-/12)clici2)

2

37t

qlq2(qiq2(a1-112)'Exx

1 1

ExxExx (E1-2-12)clic12)

ci1q2 (21-22) Exx

1

(11-22)

The total covariance matrix among the predictors can be broken up into a

within-groups covariance matrix E and a between-groups covariance matrix,

(A.9)
Exx 112)(U1 22).

Substituting (A.9) into (A.8) yields

1-1.(A.10) P
2

= q02(.11-112)' [E + q02(111-112)(111-112) l21-22)

q1q2(ul-u2)1[E(' qlq2E-1(ul-u2)(u1-u2)1)]-1(U1-22)

q1q2(u1-u2)1 (I qlq2E-1(u1-u2)(u1-u2)1]-1E-1(u1-u2)

At this point, it is necessary to use the known matrix algebra relation

(Kshirsalor, 1972),

(A.11) (I + LM)
-1

I - L(1 + ML)
-1

M

Let,

(A.12) L = q02E-1(u1 - u2)

and

(A.13) M = (u -
2
)1

19

14



15

Then the relationship in (A.11) enables us to rewrite (A.10) as

(A.14) p2 q02(u1-112)' I - qlq2E
-1

(u1-u2)(u1-112)' E-1(111-

[ 1 cilq2(111-U2)'E-1(111-112)

\ r-1, N2fl,
(102°1-11211'' t11-1.12) (q1(12' `"1-2?-

1 + q02(111 - U2)'E
1
(111 - 112)

By definition, the Manalanobis generalized distance between 111 and 112

equals

(A.15) apt - (u
4

- u
2
PE-1

(14 - 12) .

When (A.15) is substituted into (A.14), the result is

(A.16) P
2
- q0261,

2
- (q1(126p

2
)

2
RI + c10261,

2
)

x 2 f X 2\ 2 f
x 2N 2N if 1 4.

2\
- (q1c12-p 11(12-p ' °41(12-p ' '''' + (102-p '

- (q1q2Cp
2
)/(1 + qlq26p

2
) .

Thus,

(A,17) p
2
(1 + q026p

2
) q026p2

and by simple rearrangement of terms, one obtains

(A.18) 6
2

m P
2

(q02)

1-p"
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APPENDIX B

AN ESTIMATOR OF THE SHRUNKEN GENERALIZED DISTANCE

Minimum Actual Error Rate

The minimum actual error rate associated with a sample classification

rule is the minimum probability of misclassification in the population

associated with discrimination along the dimension defined by the sample

discriirtnant weights. The minimum actual error rate is the minimum possi-

ble error rate associated with 'ising a sample classification rule in the

population and can be expressed as a function of the "shrunken" Mahalanobis

distance,

(B.1)
min(Ec) = ql. ln(q2/q1) - .5D

c
2 + q20 ln(ql/q2) - .5Dc .

D
c

D
c

21

(The derivation of (B.1), which assumes equal costs of misclassification,

appears in Appendix C.) In the balance of this appendix, an estimator of

E(D
c

2
) is developed. When substituted into (B.1) for D

c

2
, this estimator

can be used to approximate min(E,), which in turn serves as an approxima-

tion to E
c

, the actual error rate.

An Estimator of E(D lilielimofdp
22

If D
c

2
and the "relative sizes" of the two subpopulations, q

1
and q2,

are known, (B.1) could be used as a lower bound for the actual error rate

associated with the use of a sample classification rule in the population.

Unfortunately. D
c

2
in expressed in terms of the population parameters Ul,

u2, and E, and these quantities usually are unknown. (If these parameters
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were known, concern abiJut the actual error rate would be unnecessary since

the optimal classification rule would be knowable.) An estimator for D
c

2

in terms of sample quantities is needed. In this section, the transforma-

tional invaria
2

, the distribution for sample discriminant weights

1
s

and a logic paralleling that used by Drasgow, Dorans and Tucker (1979)

are combined to obtain an estimator of E(D
c

2
) which can be used to estimate

D
2

.

c

Since the population generalized distance dp2 is invariant with respect

to nonsingular transformations (Lachenbruch, 1975), it is possible to

transform any r-dimensional space into an orthogonal orientation, in which

the first dimension is parallel to the line passing through the subpopula-

tion centroids and where e-ch dimension has unit variance, without affect-

ing dp2. In addition, S
2

is invariant to translations. These permissible

transformations and translations can be applied to any two multivariate

normal subpopulations with a common E and centroids andand R2, to obtain a

new covariance matrix E and new centroids p and p2, having special forms

(B.2) i = I

and

(B.3) (J1 - 1;2)* - (Sp, 0, ..., 0) .

The following derivation of the estimator for E(D
c

2
) uses the convenience

of working with two multivariate normal subpopulations having parameters E,

HI, and H2. This derivation, however, is not specific to this special type

of population. It's applicability to any arbitrary pair of multivariate

normal subpopulations is guaranteed by the invariance of dp2 to trans-

formation and translation.

22
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The general expression for D
c

2
in (23) reduces to

(B.4) D
c

2
= 6

p

2
1 s12

1 '1
-s -s

for subpopulations having the parameters E, 5
1'

and 5
2'

in (B.2) and (B.3).

The term 1
s1,

is the first element of 1
s

and 1 s12 is the first element in
-

the sum

(B.5) 1
s
'1
-s

1s12,

2
+ 1

s2

2
+ + 1

si

2
+ + 1- sp

2

Over random samples of size N, with group sample sizes N1 and N2, the

expected value of D
c

2
is

(B.6) E(Dc2)
p21s12

1 '1
-s -s

which can be estimated by

(B.7) Est(E(D
c

2
)) = dp

2
e(1

s1

2
) .

e(l.s 'Is)

In order to proceed further, expressions for the quantities e(1 s12 ) and

e(1
s
'1

s
) are needed. Fortunately, Kshirsagar (1972) has derived an estima-

tor for (N-2)
-2

e(1
s1 s

1),

E-1,11 ,E-1 G-1
(N-2)-2e(1 1 ') [(N-3) + N N 6 2]E-1 (N-r-3) N N

(B.8) -s-s 1 2 p 1 2 1 -2' -1 2'

where

(B.9)

N N

G N
1
N
2
(N-r-2)(N-r-3)(N-r-4)/N

For subpopulations having parameters E, 1.1 and 1.1

2'
a simplified expression

for e(411) can be otained from (B.8),

(B.10) e(1
s1 s

1) = (N-2)
2

[[(N-3) + N1N2dp2N
-1

]1 + N
1
N
2
N-1(N-r-3)6 I ,

23
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where A is a r-by-r singular matrix containing 6
2
as its first element,

and zeros elsewhere.

The relationship (Kshirsagar, 1972)

(B.11) s(ls'lls) trace [e(11.113')]

can be used to obtain

(B.12)
12)

(N-2)2
(N-3) + N

1
N
2
N-1(N-r-2)6 2

and

(B.13)

G

z(ls'ls) (N-2) 2 [(N-3) [r + N
1

N
2
N-Id

p
2]]

Substituting (B.12) and (B.13) into (B.7) yields

(B.14)
Est(E(E, 2)) . (5

2
[N-3 + N

1
N
2
N
-1

(N-r-2)(5
2

]

(N-3)[r + N
1
N
2
N
-1

p

2
]

an estimate for D
c

2
) in terms of 0

2
, the population generalized dis-

tance. (Note that when r 1, Est(s(D
c

2
)) equals 6

2
. This result is not

surprising. When the original subpopulations are unidimensional, a sample

discriminant function merely rescales the original dimension and the stan-

dardized distance between population centroidr along that dimension remains

invariant.)

An Estimator for E(D
c

2
) in Terms of Sample Quantities

For (B.14) to be usable an estimator for the term 6
2
is needed.

Either (N-r-3)ps
2
- (N-2)Nr/(N1N2(N-r-3))]/(N-2) or [Ds

2
(N-r-3)/(N-2)] can

be used. The former is an unbiased estimator, but Lachenbruch and Mickey

24
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(1968) used the latter in the DS-method to avoid negative est43ates of the

population generalized distance. Once either term is used in (B.14), the

resulting estimate of a(Dc2) can be substituted into (B.1) for Dc2 to esti-

mate min(E
c
), which can serve as a lower bound estimate of E

c
. The mnemon-

ics given this procedure of estimating through an estimate of min(Ec) are

the MS-method when the biased estimate of 8
2
is used, and the MU- method

when the unbiased estimate of 6
2

is used.
p



APPENDIX C

PROOF THAT MIN(Ec) IS A FUNCTION OF D
c

2

21

The claim has been made that the minimum actual error rate associated

with ust of a sample classification rule in the population is a function of

the "shrunken" Mahalanobis distance between subpopulation centroids along

the dimension defined by the sample discriminant function. This claim is

proved here for the case where costs of misclassification are assumed to be

equal.

The Marginal Distribution Along is

Recall that the two subpopulations K1 and K2 follow multivariate normal

density functions with centroids ul and u2 and a common covariance matrix E.

It is well known that a nonsingular transformation of a multivariate normal

population will produce transformed variates which also follow a multivari-

ate normal distribution. Another property of multivariate normal popula-

tions is that the marginal density functions are univariate normal with

means and variances obtained by taking the appropriate components of 4 and E

(Anderson, 1958).

The sample discriminant weights ls' can be viewed as one row of a non-

singular c-by-r transformation matrix which reorients the reference frame

in the r-dimensional space. The remaining (r-1) rows of the transformation

are chosen such that the dimensions they produce are mutually orthogonal

and orthogonal to the dimension formed by the discriminant weights ls'.

(These r new dimensions are statistically independent by virtue of their

26



normality.) When the two subpopulation centroids 11 and y2 are projected

onto the dimension defined by andand accompanied by tl,e translation,

-1
s
l(i

4
+

2
)/2, the means

(C.1)

and

(C.2)

*
1

u2*

1 ' (11 - .5(2
-s -4 4

lel (u2 .5(i1

+
2
)]

12)]
are the end result. Within each subpopulation, the variance along this

dimension is

(C.3) V 1 1 'El
w -s -s

The scores within each subpopulation along this dimension are distributed

normally with mean lik* and variance Vw. In formal notation, we say that

for er7.1 subpopulation k the density function for x* is

(C.4)
fk(x*) (27rVw)-.5 exp -.5 x* - lik* .5

[
V

.5

w

22

Minimum Actual Error Rate Associated with a Sam le Classification Rule

The minimum actual error rate associated with a sample classification

rule is equal to the minimum total probability of misclassification along

the dimensioz defined by the sample discriminant weights le. To obtain the

minimum total probability of misclassification along this dimension, an

optimal classification rule along this dimension is needed, that is, the

cutoff score must be adjust&'d. Welch's (1939) solution is as applicable to

classification along this singl9 dimension defined by is as it is to clas-

sification in the original r-dimensional space.

27
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General Solution

Let f
k
(x) b4 6,1e density function of x if it comes from subpopulation

K. Let qk be the proportion of the total population that is in subpopula-

tion K. Assign x to K, if x is in some region R
1
and to K

2
if x is in a

region R2. Assume that R1 and R2 are mutually exclusive and that their

union includes the entire space R. The total probability of misclassifica-

tion is

(C.5) Ep - q1fR2f1(x)chl + q2f/tif2(x)chl

= ql[ffi(x)dx - fitif,(x)dx] + q2fitif2(x)dx

cl1ffi(x)61 fRIN2f2(x) clifi(x)NE
In order to minimize E

p
, R

1
should be chosen such that

(") cl2f2(x) clifi(x) < 0
Thus the classification rule is to assign x to K1 if fl(x)/f2(x) > q2/q,

and to K2 if fl(x)/f2(x) < q2/ql. If fl(x)/f2(x) - q2/q, it is a tossup.

Optimal Classification Along the Dimension Defined by 18

The density functions for scores on the dimension defined by the sample

discriminant weights are defined in (C.4). Thus the ratio of fl(x*) to

f (x*) is

(C.7)
f.i (x*) - (2nVw).5 exp[-.5(x* - u

1
*)

2
/V
w

]

f2(x*) (21rVw)
.5

expr-.5(x* - u2*) /Vw]

= exp[ -5(x*2 - 2x*ul* + Ul* )/Vw + .5(x*2 - 2x*u2* + u2* )/Vw]

- exp[x*(u1* - U2*)/Vw - .5611* - u2*)(111* + u2*)/Vw]

- exp((x* - .501* + ul*))01* - u2*)/Vw] .
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Taking the natural logarithm yields the optimal classification rule, which

is to assign x* to K1 if

(C.8) Wp(x*) [[x* - .5(41* + 42*)](41* - u2*)/Vw] > ln(q2/q1)

and to K
2

if

(7.9) Wp(x*) < ln(q2/q1) .

Note that W (x*) has the standard form of an optimal classification rule:

the scores x* are multiplied by a scaling factor (u1* - P2*)/Vw, which is

the univariate expression for the coefficients of Fisher's cascriminant

function and then this score is adjusted by subtracting the additive con-

stant (III* + 42*)/2.

Since W (x*) follows a univariate normal distribution, we are able to

calculate the optimal error rate (in this space of reduced dimensionality)

by using the cumulative normal distribution function $(z). The probability

of a member of K
1
being misclassified by W (x*) is

(C.10) P1 Prutt(Wp(x*) < ln(q2/q1))1K1]

To use the cumulative normal distribution function, scores on W (x*) must

be standardized. Let z
1
* equal the scores W (x*) standardized in the met-

ric of K1,

(C.11) Z
1
* (W (x*) - W

p
(4

1
*))/(V

w
*)

.5

where V * is the variance of the W (x*) scores. The mean W
p 1

*) equals

(C.12) W
p

(.1
1
*)

1
* - .5(u

1
* + u

2
*)][(u

1
* - v

2
*)/vie]

.5(u1*
u2 *) [(u1*

P2*)/Vw]

- .5(u1*
P2*)

2

/Vw
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When the relationships in (C.1) - (C.3) are substituted into (C.12),

(C.13)
W
p

(11
I
*) Is .5 I (1 - U )1

es
)-s 1 -2

1 'E 1s s

25

it reduces to the "shrunken" Mahalanobis distance divided by two. An anal-

ogous derivation for W
p
(u

2
*) yields

(C.14) W
p
(u

2
*) - -.5D

c
2

The variance of W (x*) in either subpopulation, K1 or K2 can be expressed

as

(C.15) V
w
* - (U

I
* - u

2
*)V

w
-417

w
V
w 1(U

I
* - U

2
*)

Is (V
I
* - U

2
*)

2
/V
w

= D
c

2

In terms of the standardized variable z1 *, P1 can be expressed as

(C.16)
ln(q2/q1) - .5Dc

2

P1 = Prob * < K(z
I

)

D
c

which can be rewritten as

(C.17)
P1 = 0 ln(q

2
/q

1
) - 5D

c
2

Dc

where $(z0) is the cumulative distribution function of normal variable with

mean zero and variance unity evaluated at z0, i.e.,

(C.18) 0(z0) -

zo

(27) exp[- 5(z2)]dz
.

To dettimiae the probability of misclassifying a member of K2, an anal-

ogous derivation is followed, yielding

(C.19) P2 - (1n(q2/q1) + .5Dc2)/Dc]

- 1 - [(1n(q2/q1) .5Dc2)/Dcl .

30



The total probability of misclassification can then be expressed

(C.20) E
P
* q

1
P

1
+ q

2
P
2

q10 ln(q2/q1) - .5Dc2 + q2,11 - ln(q2/q1) + .5Dc2

[
D
c

D
c

min(Ec)

It has just been demonstrated that the minimum actual error rate asso-

ciated with use of the sample classification rule in the population is a

function of the "shrunken" Mahalanobis distance between subpopulation

centroids projected along this dimension.

26

Relationship Between W
s
(x) and W (x*)

The rule W (x*) is the optimal classification rule along the dimension

defined by the sample discriminant weights. It is interesting to compare

W (x*) to the sample classification rule W (x). To make this comparison
s -

possible, it is desirable to express W (x*) in terms of the original vari-

ables x. Using the relationships in (C.1) - (C.3), (C.8) can be rewritten

as

(C.21) W (x*) 1
2
'[x - .5Ci

1
+ f

2
Ms] ,

-

where s is the scaling constant

(C.22) 8 Is'( U2) '' Cr 2D
c
2/(a 1s)

[

y -yx-

1 'El
El El

where Y2 is the variance of the criterion of group membership and a is
-yx

the 1-by-r vector of covariances between group membership and the r predic-

tor variables. Let's define d
s

as the difference in sample centroids
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and d as the difference in population centroids, such that

(C.23) d
s

- d
p -

[(f
4 -2

- ) - (u
4

- u2)]

This expression allows us to rewrite (C.21) as

(C.24) Wp(x*) 118'(E - .5(EI - .5(g4 - 21',2)) + .518'(is - 44)][8]

which expresses W (x*) as a function of W
s
(x), the sample classification

rule. Note that the two rules differ by a constant 1
s
I(d

s
- d )/2 and a

scaling factor, When the subpopulations K1 and K2 are of equal size, the

only important difference between W (x) and W (x*) is the additive con-
s -

stant, which is a function of how well the sample centroid difference, xi -

E2, approximates 21 - 22, the population centroid difference. To the

extent that this approximation is good, the actual error rate associated

with W (x) will approach the minimum actual error rate associated with
P

W (x*). For example, if d
s

- d
p

0, then W
s
(x) is merely a rescaling of

W (x*) by a multiplicative constant 1/s, and the standardized version of

W
s
(x) is identical to the standardized version of W (x*).
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APPENDIX D

RELATIONSHIP BETWEEN R
c

2
AND D

c

2

Consider applying sample discriminant weights is to the population

scores and computing the correlation between the binary criterion variable

of group membership and the scores obtained by applying is to the r predic-

tors. The sample discriminant weights, are

(D.1) c-1(71 - i2) ,

where C is the pooled within groups covariance matrix and al and i2 are the

centroids in samples from subpopulations K1 and K2, respectively. The

squared correlation (or cross-validity coefficient) between the binary

criterion and the predictions based on ls' is

(D.2) R (1 'a )
2ga 2

1 E 1 )
c

2

-s -xy y -s xxs 9

which, due to the binary nature of the criterion Y, can be rewritten as

- - -1
R
c

2
((x -x )'C (11 -11 )q q )

2

(D.3) 4 2 4 2 1 2

(f1-i12) C-1 ExxC-1

qlq2(071-172rC-1(u1-u2))2

4
-f2

x)'C

-1
E
x
C
-1

(f
1
-f

2
)

Note from (A.9), that E can be expressed as the sum of a within-groups

and a between-groups covariance matrix. Thus, (D.3) can be rewritten as

-

(D.4) Rc
2

(102((1:1-'12) .

-1
(1!1-1t2))

2

(11.42) C-1
(E

qlq2 (1'1-1'2) ul-u2) 1C-1 ('11-112)
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2 _ -1
R q02((f1-12)

,

C (121-u2))
2

(f
4 -2

PC-1
EC

-1
(f
4
-f
2
) + (f

4
-f
2
PC-1

q
1
q
2
(U
4 2 -

)(U4 --U2PC
-1

(1
4
-1
2

)- - - -

Note the two scalar quantities

(D.5) (f
4
-f
2
PC 1

(u
4
-u
2

) (u
4
-u
2
PC 1

(f
4 -
-1
2- xx - - xx -

are equal to each other and define the difference between centroids pro-

jected onto the discriminant dimension defined by ls'. Hence, (D.4) can be

rewritten as

_

(D.6)
R
c

2
qlq2

1 1- L2)

,

C
-1

1-22)
2

(i4
-x
2
)'C

-1
EC

-1
(x
4
-x
2
) + q

1
q
2

(i
4
-x
-2PC

-1
(U4--2 )

2

Rearranging terms in (D.6) yl lds

(D.7) Re
2
KE1-212PC

-1
EC

-1
(il1 -f2)] as q02[(11-,32)'C

1
(U1-112)]

2
(1-R

c

2
)

and

(D.8)
R

2 - -1 2
-

(q1(12) ql-E2)
,

C (E1-112)

-x )
,

C
-1

EC
-1a )(1-R

c

2)

4 2 1 2

Upon noting the definition of ls' in (D.1), D.8) can be rewritten as

2

(D.9)
R
c

2

(q1c12) is'(111-1/2)

(1-R
c

2)

s s
1 'El

The expression on the right hand side of the equality is the "shrunken"

Mahalanobis distance between population centroids along the dimension

defined by ls'. Hence, it has been shown that

(D.10)
D R

2 2

if(q1c12)

(1-R
c

2
)
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